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Abstract
The new integrable systems associated with the space of elliptic branched
coverings are constructed. The relationship of these systems with the elliptic
Schlesinger’s system (Takasaki 1998 Lett. Math. Phys. 44 143–56) is
described. For the standard two-fold elliptic coverings the integrable system
is written explicitly. The trigonometric degeneration of our construction is
presented.

PACS numbers: 02.30.Ik, 02.40.Sf

1. Introduction

The most well-studied integrable systems such as Korteweg–de Vries, non-linear Schlesinger
and sin-Gordon [2] appear as compatibility conditions of the auxiliary linear system

�x = U� �y = V � (1.1)

where U,V and � are matrix functions of (x, y) and a constant (i.e. independent of x and y)
spectral parameter γ ∈ C. Matrices U and V for these systems are meromorphic functions of
γ with (x, y)-independent positions of poles.

In 1978, Belinskii and Zakharov [3] and Maison [4] discovered integrability of the Ernst
equation

((x − y)GxG
−1)y + ((x − y)GyG

−1)x = 0 (1.2)

where G ∈ SU(1, 1)/U(1), which does not fit into this framework. Namely, the Ernst
equation is a compatibility condition of the system (1.1) with matrices U and V of the form:

U = GxG
−1

1 − γ
V = GyG

−1

1 + γ
(1.3)

where the spectral parameter γ is a function of x, y and a ‘hidden’ (‘constant’) spectral
parameter λ:

γ (λ, x, y) = 2

y − x

(x + y

2
− λ +

√
(λ − x)(λ − y)

)
. (1.4)
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Therefore, the Ernst equation can be viewed as a ‘deformation’ of the principal chiral model
(PCM) equations. For this model the matrices U and V have the same form (1.3) but γ is a
constant (independent of (x, y)) spectral parameter.

The same equation (1.2) for G ∈ SU(2)/U(1) plays the role of the Gauss–Weingarten
system for the so-called Bianchi surfaces in R

3 (surfaces of negative Gaussian curvature of
special form [5, 6]).

The general deformation scheme of linear systems of the type (1.1) was proposed in 1989
by Burtsev et al [7]. Assuming that the spectral parameter γ in (1.1) depends on x and y,
they derived a system of differential equations on γ which provide a part of the compatibility
condition of the linear system (1.1). Solutions of the system for γ were found in the recent
work [8]; in this work γ is given by the inverse map to the uniformization map of a rational
(genus zero) N -fold branched covering of the Riemann sphere when the branch points of
the covering are chosen to be independent variables. In other words, a deformation of the
linear system (1.1) was associated with the space of rational functions of degree N with simple
critical points. In the case of two-fold rational covering, if the matrix dimension equals 2, this
scheme leads to the Ernst equation.

In [8] it was also shown how to generalize this approach to the Hurwitz spaces of genus
g � 2 (spaces of meromorphic functions on the Riemann surface of genus g) for matrix
systems. However, for the genus greater or equal to 2 it is difficult to present any explicit
equations. The linear system associated with a genus g branched covering L has the following
form [8]:

d�

dλm

= Um� (1.5)

where the matrix Um(P, {λm}), P ∈ L has only one simple pole at the ramification point Pm

of the covering L and does not have any other singularities. Such a function exists on a genus
zero surface, but for the higher genus it must be non-single valued. This means that for genus
greater than one the matrices Um get some multiplicative and (or) additive transformations
under tracing along topologically non-trivial cycles of the surface. These transformations
depend on branch points of the covering, which makes the corresponding integrable system
transcendently non-linear.

In genus one, however, it is possible to develop in detail a scheme analogous to the genus
zero case and this is the purpose of the present paper.

Consider the Hurwitz space H1,N , the space of N -fold genus one coverings of the Riemann
sphere with simple ramification points (coverings consisting of N copies of CP 1 with 2N

ramification points). Projections of the ramification points on the base of the covering are
called the branch points; we assume them to be distinct and denoted by λ1, . . . , λ2N . Consider
the Abel map ν : L → C from the genus one covering L onto its fundamental domain in the
complex γ -plane. We denote by γ1, . . . , γ2N the images of the ramification points under this
map. They satisfy the following equations as functions of the branch points:

∂γn

∂λm

= −αm[ρ(γn − γm) + ρ(γm)] m �= n

∂γm

∂λm

=
2N∑

n=1,n�=m

αn[ρ(γm − γn) + ρ(γn)]

where ρ denotes the logarithmic derivative of the Jacobi theta function θ1;αm are some
coefficients subject to the differential equations:
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∂αn

∂λm

= −2αnαmρ ′(γn − γm)

∂αm

∂λm

=
2N∑

n=1,n�=m

2αnαmρ ′(γn − γm).

On a covering of genus one, the linear system (1.5) can be written in terms of the elliptic
r-matrix, whose transformations under tracing along non-trivial contours of the covering are
given by similarity transformations independent of the branch points. Namely, in this paper
we consider the linear system (1.5) where matrices Um look as follows:

1
Um(P )= 2

tr (
12
r (ν(P ) − γm)

2
Jm) (1.6)

with some matrices Jm({λk}), P ∈ L. Here we consider all matrices as operators in the tensor

product of two copies of C
K :

1
A= A⊗ I,

2
A = I ⊗A; the elliptic r-matrix

12
r is a linear operator

in C
K ⊗ C

K . The main result of this paper is the integrability of the following system:

∂
1

Jm

∂λn

= −αn

1
Jm ρ ′(γm − γn) − αm

2
tr (

12
r ′(γm − γn)

2
Jn) − [

1
Jm,

2
tr (

12
r (γm − γn)

2
Jn)]. (1.7)

It appears as a compatibility condition of the linear system (1.5), (1.6). The systems (1.7)
are genus one analogues of the integrable systems constructed in [8]; they give elliptic
generalizations of the Ernst equation (1.2).

We define the τ -function for the integrable system (1.7) as follows:
∂ log τ

∂λm

= 1

2αm

tr
(
J 2

m

)
. (1.8)

This system is compatible as a corollary of (1.7). For the genus zero two-fold coverings this
definition gives rise to one of the metric coefficients on the corresponding spacetime [8].

The non-linear integrable system (1.7), together with the associated linear system (1.5),
(1.6), turns out to be closely related to the elliptic Schlesinger system proposed by Takasaki
[1]. Namely, from each solution of the elliptic Schlesinger system we can obtain a solution
of the system (1.7). For these solutions there is a simple link between τ -function (1.8) and
τ -function of the elliptic Schlesinger system:

τ({λm}) =
L∏

j=1

(
∂ν

∂λ
(Qj )

)tr A2
j /2

τSch({zk})|zk=γ (Qk) (1.9)

where {z1, . . . , zL} is a set of points in the γ -plane which forms a part of monodromy data for
the elliptic Schlesinger system; Q1, . . . ,QL are points on the covering whose images under
the Abel map ν are given by z1, . . . , zL and whose projection on the λ-sphere do not depend
on the branch points {λm}; matrices A1, . . . , AL solve the Schlesinger system; the variables
tr A2

j are integrals of the elliptic Schlesinger system.
The paper is organized as follows. In section 2 we discuss the genus zero case and

present a slight generalization of the scheme proposed in [8]. In section 3 we derive auxiliary
differential equations describing the dependence of the Abel map ν of the genus one covering
on the branch points. Further, we introduce the linear system (1.5), (1.6) and derive the
integrable system (1.7) as its compatibility condition. Then we define the tau-function
of the integrable system. Finally, we write explicitly the system (1.7) in the case of the
simplest elliptic covering. Section 4 is devoted to a description of the link of the integrable
systems constructed in section 3 with the elliptic Schlesinger system proposed by Takasaki
[1]. In section 5 we describe the trigonometric degeneration of the constructed integrable
systems (1.7).
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2. Integrable systems related to space of rational functions

The goal of this section is to describe integrable systems related to the space of rational
functions. We present a different version of the construction proposed in [8]. Consider the
space of rational functions of degree N with 2N − 2 critical points which have the following
form:

R(γ ) = aNγ N + aN−1γ
N−1 + · · · + a0

γ N + bN−1γ N−1 + · · · + b0
. (2.1)

The genus zero algebraic curve

λ = R(γ )

can be realized as an N -fold branched covering L of the λ-sphere CP 1; a point P of the
covering is a pair (λ, γ ). We denote by π the projection operator from the covering onto
the underlying λ-sphere: π(P ) = λ. Functions (2.1) have 2N − 2 critical points counting
multiplicities; according to the Riemann–Hurwitz formula, the genus of the corresponding
covering L is zero. We assume the ramification points of the covering to be simple and finite;
denote them by P1, . . . , P2N−2. Their projections π(Pm) = λm on the λ-sphere (the branch
points) are critical values of the rational function R(γ ): λm = R(γm), where {γm} are critical
points of the function R, i.e. solutions of the equation R′(γ ) = 0. We assume all branch points
λ1, . . . , λ2N−2 to be distinct.

To each element l of the fundamental group π1 (C\{λ1, . . . , λ2N−2}) one can assign an
element σl of the symmetric group SN , which describes how the sheets of the covering permute
when λ goes along the contour l. In this way we can assign to the covering L a representation
of π1 (C\{λ1, . . . , λ2N−2}) in SN . For a fixed number of sheets, type of branch points and
the assigned representation, the covering is determined by positions of the branch points, i.e.
{λm}2N−2

m=1 gives a set of local coordinates on the Hurwitz space. Observe that this set has 2N−2
elements whereas the corresponding rational function (2.1) is defined by 2N + 1 parameters.
This is because any Möbius transformation in the γ -sphere (determined by three parameters),

γ �→ aγ + b

cγ + d
ad − bc = 1 (2.2)

leaves the positions of the branch points {λm} invariant.
For our purposes we fix the coefficient aN in the nominator of the rational function to be

a constant, say aN = 1; then the rational function (2.1) becomes

R(γ ) = γ N + aN−1γ
N−1 + · · · + a0

γ N + bN−1γ N−1 + · · · + b0
(2.3)

and at infinity the following asymptotics takes place:

λ = 1 +
β

γ
+ o

(
1

γ

)
as γ ∼ ∞ (2.4)

where we denoted β = aN−1 − bN−1.
We shall consider the critical points {γn} of the rational function (2.3) as functions of its

critical values {λn}. First, note that on the covering L there is defined a one-to-one function
ν : L → CP 1 such that R(ν(P )) = π(P ); in particular, the images of ramification points are
the critical points of the rational function: ν(Pm) = γm. The function ν(P ) takes every value
only once, thus ν(P ) is holomorphic everywhere except the point which is mapped to infinity;
then we can write the expansion of ν(P ) with respect to the local parameter

√
λ − λm in a

neighbourhood of the ramification point Pm (for any m = 1, . . . , 2N − 2) as follows:

ν(P ) = γm + vm

√
λ − λm + O(λ − λm) P → Pm. (2.5)
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Let us differentiate these expansions with respect to λn and rewrite the result in terms of ν,
using the relation

√
λ − λn = (ν − γn)/vn + O((ν − γn)

2) which follows from (2.5). We see
that the function ∂ν/∂λn is a meromorphic function of ν which has a first-order pole at the
point γn and is regular at all other critical points, i.e.

∂ν

∂λn

= αn

γn − ν
+ f (ν) (2.6)

where αn = (vn/2)2, and f (ν) is a function regular everywhere except the point at infinity. We
find the behaviour of this function at infinity differentiating the asymptotics (2.4) (which holds
for γ = ν(P ) since locally, in a neighbourhood of the pre-image of infinity P ∼ ν−1(∞), the
function γ (λ) = ν(P ) gives the inverse to R(γ ), γ ∼ ∞ ) with respect to λn:

0 = βλn

ν
− νλn

β

ν2
+ o

(
1

ν

)
as ν ∼ ∞. (2.7)

This implies that the following equations describe the dependence of the function ν on the
critical values of the corresponding rational function (2.3):

∂ν

∂λn

= αn

γn − ν
+

βλn

β
ν + cn n = 1, . . . , 2N − 2 (2.8)

with some functions cn = cn({λk}).
The compatibility condition of the system (2.8) gives the following system of differential

equations for the critical points {γm} of the rational function (2.3):

∂γm

∂λn

= αn

γn − γm

+
βλn

β
γm + cn n �= m. (2.9)

Remark. We get the same equations if instead of the rational function (2.3) we consider the
one of the form:

R(γ ) = βγ + δ +
N−1∑
k=1

ak

γ − bk

(2.10)

which can be obtained from (2.3) by a Möbius transformation.

Consider now the following system of linear differential equations for a matrix-valued
function �(P, {λm}) (m = 1, . . . , 2N − 2):

d�

dλm

(P ) = γ0 − γm

ν(P ) − γm

Gλm
G−1�(P ) (2.11)

where γ0 = ν(P0), the projection π(P0) = λ0 ∈ CP 1 of the point P0 is independent of all
{λm};G({λm}) is a matrix-valued function. The compatibility condition for (2.11) is given
by the following system of non-autonomous (since all γm and γ0 are non-trivial algebraic
functions of {λm}) coupled PDEs:(

γ0 − γm

β
Gλm

G−1

)
λn

=
(

γ0 − γn

β
Gλn

G−1

)
λm

. (2.12)

The described construction of the integrable systems gives a realization of the scheme of
Burtsev et al [7] who derived the compatibility conditions for the deformed linear system of
the type (1.1). They obtained differential equations on the variable spectral parameter of the
linear system which form a part of the compatibility condition. It was shown in [8] that the
function ν(P ) is a solution of these differential equations.
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In the case of the two-fold coverings (N = 2) corresponding to the rational function of the
form (2.10) with β = 1, δ = 0 (the normalization considered in [8]) system (2.12) coincides
with the Ernst equation (1.2) after the identification λ1 = x, λ2 = y (see [8]).

There exists a well-known relationship between these rational two-fold coverings and the
surface theory: the Gauss–Weingarten equation for a surface in R

3 with the Gaussian curvature
K = −[ρ(x, y)]−2 can be written in the following form [6]:

(ρGxG
−1)y + (ρGyG

−1)x = 0 (2.13)

for G ∈ SU(2)/U(1), which for the case of the Bianchi surfaces (ρ(x, y) = x − y) formally
coincides with equation (1.2).

Here the natural question arises: are there other coverings for which the system (2.12)
takes the form of the Gauss–Weingarten equation for some surfaces? (Then it would be a
new integrable case in surface theory.) This occurs if the system (2.12) has the property
γ0 − γm = −(γ0 − γn) for some pair of indices m, n; that is

γm + γn

2
= γ0 (2.14)

where γ0 = ν(P0) is the image of the point P0 ∈ L whose projection λ0 on the λ-sphere
does not depend on {λk}. Existence of such systems is an open question. Since the covering
is locally defined by 2N − 2 independent variables {λm}, two additional parameters of the
rational function (2.3) could be used to impose some relations on {γm}. As was already noted,
the freedom to choose these parameters corresponds to two Möbius transformations in the
γ -sphere: γ → aγ and γ → γ + b. But the condition (2.14) is invariant with respect to both
of these transformations, which means that for the given degree N of a rational function we
do not have any freedom to impose condition (2.14) for any pair of m and n. However, there
is still a possibility that (2.14) holds for some rational coverings as in the case of N = 2.

3. Integrable systems related to elliptic branched coverings

In this section we construct an elliptic analogue of the integrable system (2.12).

3.1. Differential equations for images of ramification points of elliptic coverings in the
fundamental domain

The Hurwitz space H1,N is the space of meromorphic functions of degree N on Riemann
surfaces of genus one. Consider a meromorphic double-periodic function R of γ ∈ C with
periods 1 and µ and N simple poles within the fundamental domain T = C/{1, µ}. As a
function on T ,R(γ ) has degree N. The equation

λ = R(γ ) (3.1)

defines an N-fold branched covering (we again call it L) of the Riemann sphere. A point
P of the covering is a pair: P = (λ, γ ). According to the Riemann–Hurwitz formula, this
covering has 2N ramification points counting multiplicities; we assume them to be simple
and finite and denote by P1, . . . , P2N . Projections {π(Pm)} of the ramification points onto the
λ-sphere (the base of the covering) are called the branch points. They are given by critical
values λ1, . . . , λ2N of the meromorphic function R(γ ) : λm = R(γ̂m), where γ̂1, . . . , γ̂2N are
critical points of R(γ ), solutions of the equation R′(γ ) = 0. We assume the branch points
to be distinct: λm �= λn for m �= n. Our choice of the local parameters on L is standard:
in a neighbourhood of a ramification point Pm we take x(P ) = √

λ − λm, P ∈ L, P ∼ Pm;
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in a neighbourhood of a point at infinity on any sheet we take x = 1/λ; at any other point
variable λ itself is used as a local coordinate. To the covering L it is assigned a representation
of the fundamental group π1(C\{λ1, . . . , λ2N }) in the following way. To each element l of the
fundamental group one can assign an element σl of the symmetric group SN , which describes
how the sheets permute when λ goes along the contour l on the base of the covering. We fix
this representation of π1(C\{λ1, . . . , λ2N }). Then for a fixed number of sheets and type of
ramification points (we fix them to be simple) the covering is determined by positions of the
branch points; thus we consider {λm}2N

m=1 as a set of local coordinates on the space of elliptic
coverings.

Introduce on L some canonical basis of cycles (a, b). Denote by v(P ), P ∈ L, the
holomorphic Abelian differential with normalized a-period:∮

a

v = 1. (3.2)

For our covering it has the form

v(P ) = dλ

R′(γ )
= dγ. (3.3)

The integral over the b-cycle gives the module µ of the elliptic Riemann surface L:

µ =
∮

b

v. (3.4)

The function ν(P ) which maps L onto the fundamental domain T = C/{1, µ} is given by the
Abel map

ν(P ) =
∫ P

∞(0)

v (3.5)

where we choose the initial point of integration to coincide with the point at infinity on some
(the zeroth) sheet of the covering L. We denote the images of the ramification points under this
map by γm. They differ from the critical points {γ̂m} of the function R by a shift (corresponding
to the choice of initial point of integration in (3.5)) modulo the period lattice {kµ+ l; l, k ∈ N}:

γm ≡ γ̂m − c m = 1, . . . , 2N (3.6)

where c is the second coordinate of the point ∞(0) ∈ L : ∞(0) = (∞, c).
The Jacobi theta functions are given by

θ [p, q](γ ;µ) =
∑
m∈Z

exp{π iµ(m + p)2 + 2π i(m + p)(γ + q)}. (3.7)

We denote by ρ(γ ) the logarithmic derivative of theta-function θ1(γ ) = −θ [1/2, 1/2](γ ):

ρ(γ ) = d

dγ
log θ1(γ ). (3.8)

It has the following periodicity properties:

ρ(γ + 1) = ρ(γ ) ρ(γ + µ) = ρ(γ ) − 2π i. (3.9)

The derivative ρ ′(γ ) coincides with the Weierstrass P-function up to a rescaling of the
argument and an additive constant.

The following theorem describes the dependence of the map ν(P ) (3.5) on λ and the
branch points {λm}; it provides an elliptic version of equations (2.8).
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Theorem 1. The function ν(λ, {λm}) defined by (3.5) satisfies the following system of
differential equations:

∂ν

∂λ
=

2N∑
k=1

αk[ρ(ν − γk) + ρ(γk)] (3.10)

∂ν

∂λm

= −αm[ρ(ν − γm) + ρ(γm)] m = 1, . . . , 2N (3.11)

where we denoted

αm = 1

2
v2

m = 1

2

[
v(P )

d
√

λ − λm

∣∣∣∣
P=Pm

]2

. (3.12)

{γm} are the images of the ramification points under the map ν : γm = ν(Pm).

Remark. The form (3.3) of the holomorphic normalized differential implies that αm =
[R′′(γ̂m)]−1.

Proof of theorem 1. From (3.5) we see that the function ν(P ) is holomorphic in a
neighbourhood of the ramification point Pm and behaves as follows:

ν(P ) = γm + vm

√
λ − λm + O(λ − λm) as P → Pm (3.13)

where
√

λ − λm is the local coordinate in a neighbourhood of Pm, and vm is defined by (3.12).
Therefore, in this neighbourhood

∂ν

∂λ
(P ) = vm

2
√

λ − λm

+ O(1) (3.14)

∂ν

∂λm

(P ) = − vm

2
√

λ − λm

+ O(1) (3.15)

∂ν

∂λn

(P ) = O(1) n �= m. (3.16)

We rewrite these expansions in terms of the coordinate ν taking into account definition (3.12)
of αm, and the correspondence between local parameters ν − γm and

√
λ − λm is given

by (3.13)

∂ν

∂λ
(P ) = αm

ν − γm

+ O(1)
∂ν

∂λn

(P ) = −δmn

αm

ν − γm

+ O(1) (3.17)

as P → Pm.
The function ν(P ) transforms as follows under the tracing along basic cycles on L:

ν(P a) = ν(P ) + 1 ν(P b) = ν(P ) + µ (3.18)

where ν(P a), ν(P b) denote the analytic continuation of ν(P ) along a- and b-cycles,
respectively. Therefore, the derivative νλ is periodic with respect to tracing along the basic
cycles. Then the function νλ has periods 1 and µ in the γ -plane. Its local behaviour at the
points γm,m = 1, . . . , 2N is given by (3.17). Hence, we conclude that

∑2N
k=1 αk = 0 as sum

of residues, and the derivative νλ can be expressed as follows in terms of function ρ:

∂ν

∂λ
(ν) =

2N∑
k=1

αkρ(ν − γk) + const. (3.19)
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To determine the constant in (3.19) consider a neighbourhood of P = ∞(0). The Abel map
(3.5) is zero at this point, ν(∞(0)) = 0, and we can write its behaviour there as follows:

ν(λ) = α

λ
+ O

(
1

λ2

)
as λ → ∞. (3.20)

(Note that α �= 0 since we assume ∞(0) not to be a ramification point.) Therefore, for the
λ-derivative we have in a neighbourhood of P = ∞(0):

∂ν

∂λ
(λ) = − α

λ2
+ O

( 1

λ3

)
λ → ∞.

Rewriting as before this expansion in terms of the coordinate ν ((3.20) implies λ ∼ α/ν) we
see that νλ(ν = 0) = 0:

∂ν

∂λ
(ν) = −ν2

α
+ O(ν3) as ν(P ) → 0.

Therefore, (3.19) turns into (3.10).
Consider now νλm

. In the γ -plane it has only one simple pole at ν = γm as follows from
(3.17). The periodicity properties (3.18) of the Abel map imply that

∂ν

∂λm

(ν + 1) = ∂ν

∂λm

(ν) and
∂ν

∂λm

(ν + µ) = ∂ν

∂λm

(ν) +
∂µ

∂λm

. (3.21)

The function −αmρ(ν − γm) + const satisfies the periodicity condition (3.21) since, due to the
Rauch variational formulae [9], we have

∂µ

∂λm

= π iv2
m = 2π iαm. (3.22)

To find the constant term we again put ν = 0, i.e.P = ∞(0). Then from the asymptotics (3.20)
we see that νλm

(ν = 0) = 0, which leads to (3.11). �

Remark. Equations (3.11) can also be deduced from the Rauch variational formulae for the
differential v [9].

Compatibility conditions of the system (3.10), (3.11) imply the system of differential
equations describing the dependence of {γm} on the branch points {λm} (the indices run
through the set {1, . . . , 2N}):

∂γn

∂λm

= −αm[ρ(γn − γm) + ρ(γm)] m �= n (3.23)

∂γm

∂λm

=
2N∑

k=1,k �=m

αk[ρ(γm − γk) + ρ(γk)]. (3.24)

The equations for residues αm which also follow from the compatibility of (3.10) and (3.11)
look as follows:

∂αn

∂λm

= −2αnαmρ ′(γn − γm) (3.25)

∂αm

∂λm

=
2N∑

k=1,k �=m

2αkαmρ ′(γk − γm). (3.26)

In fact, equations (3.25) and (3.26) are nothing but the Rauch variational formulae [9] for the
holomorphic differential v.
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3.2. Integrable systems

Denote the matrix dimension of our system by K. The classical elliptic r-matrix is the following
linear operator in the tensor product of two copies of C

K :

12
r (γ ) =

K−1∑
A,B=0

(A,B) �=(0,0)

wAB(γ )
1
σAB

2
σ AB (3.27)

where wAB are given by the combinations of Jacobi’s theta functions (3.7) ((A,B) �= (0, 0)):

wAB(γ ) = θ[AB](γ )θ ′
[00](0)

θ[AB](0)θ[00](γ )
(3.28)

where we denote

θ[AB](γ ) = θ[AB](γ ;µ) = θ

[
A

K
− 1

2
,

1

2
− B

K

]
(γ ;µ).

All wAB have a simple pole with unit residue at γ = 0 and the following twist properties:

wAB(γ + 1) = εAwAB(γ ) wAB(γ + µ) = εBwAB(γ ) (3.29)

where ε = e2π i/K . The matrices σAB are the higher rank analogues of the Pauli matrices; they
form a basis of sl(K, C) and are defined as follows (for (A,B) �= (0, 0)):

σAB = HAFB (3.30)

where F is the diagonal matrix

F = diag{1, ε, ε2, . . . , εK−1}
and H is the permutation matrix

H =




0 1 0 . . 0
0 0 1 . . 0
. . . . . .

0 0 0 . . 1
1 0 . . . 0


 .

These matrices satisfy the relations εFH = HF , and FK = HK = I .
Together with σAB we introduce the dual basis σAB :

σAB = ε−AB

K
σ−A,−B (3.31)

such that

tr(σABσCD) = δC
AδD

B . (3.32)

From (3.29) and properties of matrices F and H we derive the following periodicity properties
of the elliptic r-matrix (3.27):

12
r (γ + 1) = 1

F
−112

r (γ )
1
F

12
r (γ + µ) = 1

H
12
r (γ )

1
H

−1. (3.33)

In the following we shall also need the functions

ZAB(γ ) = wAB(γ )

2π i

(
θ ′

[AB](γ )

θ[AB](γ )
− θ ′

[AB](0)

θ[AB](0)

)
(A,B) �= (0, 0) (3.34)
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which have no singularities and transform as follows:

ZAB(γ + 1) = εAZAB ZAB(γ + µ) = εB(ZAB(γ ) − wAB(γ )). (3.35)

Using the fact that theta functions satisfy the heat equation,

∂2θ [p, q](γ ;µ)

∂γ 2
= 4π i

∂θ [p, q](γ, µ)

∂µ
(3.36)

we get the the following relation between ZAB and wAB :

∂µwAB(γ ;µ) = ∂γZAB(γ ;µ). (3.37)

Now we are in a position to write down an ‘elliptic’ counterpart of the linear system (2.11):

d
1
�(P )

dλm

= 2
tr (

12
r (ν(P ) − γm)

2
Jm)

1
� (P ) (3.38)

where

Jm =
K−1∑

A,B=0
(A,B) �=(0,0)

J AB
m σAB

with scalars JAB
m . Here m = 1, . . . , 2N,� = �(P, {λm}) is a matrix-valued function;

as before, ν(P ) is the Abel map (3.5) from the covering L onto its fundamental domain
T = C/{1, µ}; γm = ν(Pm). The compatibility condition of this system

(
2
tr (

12
r (ν(P ) − γm)

2
Jm))λn

− (
2
tr (

12
r (ν(P ) − γn)

2
Jn))λm

+ [
2
tr (

12
r (ν(P ) − γm)

2
Jm),

2
tr (

12
r (ν(P ) − γn)

2
Jn)] = 0 (3.39)

gives the system of differential equations for matrices Jm as functions of the branch points λm:

∂
1

Jm

∂λn

= −αn

1
Jm ρ ′(γm − γn) − αm

2
tr (

12
r ′(γm − γn)

2
Jn)

− [
1

Jm,
2
tr (

12
r (γm − γn)

2
Jn)] m �= n (3.40)

where r ′ stands for the derivative of the r-matrix with respect to its argument. To prove that
the compatibility condition reduces to (3.40) we, first, compute the derivatives in (3.39) using
the chain rule:

rλn
(γ ) = rµ(γ )µλn

+ r ′(γ )γλn
.

The derivative of the period µ is given by (3.22); for differentiation of ν and {γm} one uses
the equations (3.11) and (3.23), respectively. Then we note that the vector bundle χ over
the Riemann surface L, whose monodromy matrices along the cycles a and b are given by
F−1 and H, respectively, is stable [10]. Checking the periodicity properties of the left-hand
side of (3.39) we see that it is a section of the adjoint bundle ad χ . Due to the stability of χ

the bundle ad χ does not have holomorphic sections (see, for example, [11]). Therefore, for
condition (3.39) to hold it suffices that the left-hand side has no singularities; this is equivalent
to the system (3.40).

Equations (3.40) form the non-autonomous non-linear integrable system associated with
the space of elliptic coverings which gives an elliptic analogue of the integrable system (2.12).



10596 V Shramchenko

3.3. Tau-function

Let us introduce an object which we shall call the tau-function of the system (3.40):
∂ log τ

∂λm

= 1

2αm

tr
(
J 2

m

)
. (3.41)

To prove consistency of the definition we compute the derivatives of the right-hand side,
∂

∂λn

(
1

2αm
tr
(
J 2

m

))
, using (3.40). Then we get

∂2 log τ

∂λm∂λn

= − 1
tr

2
tr (

1
Jm

2
Jn

12
r ′(γm − γn)).

This expression is symmetric in m and n, due to the following properties of the r-matrix:
12
r (γ ) = − 21

r (−γ )

and
12
r ′(γ ) = 21

r ′(−γ ).

This proves compatibility of the equations (3.41).
An alternative definition of the tau-function (3.41) can be given in terms of the one form

d� �−1 = �ν�
−1 dν:

∂ log τ

∂λm

= 1

2
res|Pm

{
tr(d� �−1)2

dλ

}
. (3.42)

To prove the equivalence of the two definitions, first note that we can write

dλ = ∂λ

∂ν
dν. (3.43)

Therefore using (3.10) for ∂ν/∂λ we get

tr(d� �−1)2

dλ
= ∂ν

∂λ
tr(�ν�

−1)2 dν =
(

2N∑
k=1

αk(ρ(ν − γk) + ρ(γk))

)
tr(�ν�

−1)2 dν. (3.44)

Further, we write the ‘full’ derivative of � with respect to λm as follows:
d�

dλm

= ∂�

∂λm

+
∂ν

∂λm

∂�

∂ν
(3.45)

then using the form of the linear system (3.38) and formula (3.11) for the derivative of ν, we
rewrite (3.45) in the form:

2
tr (

12
r (ν − γm)

2
Jm) = ∂

1
�

∂λm

1
�

−1 − αm(ρ(ν − γm) + ρ(γm))
∂

1
�

∂ν

1
�

−1 (3.46)

from which one can find tr(�ν�
−1)2 and see that (3.42) is equivalent to (3.41).

3.4. Integrable system in the case of two-fold elliptic coverings

The simplest elliptic covering L has two sheets and four ramification points. It corresponds
to the hyperelliptic curve given by the following equation:

ω2 = (λ − λ1)(λ − λ2)(λ − λ3)(λ − λ4)

where λm,m = 1, . . . , 4, are branch points. On the covering we choose the basic cycle a
to encircle ramification points P1, P2, and the b-cycle to encircle points P2 and P3. For this
Riemann surface the normalized holomorphic differential v is given by

v = dλ

ω

[∮
a

dλ

ω

]−1

. (3.47)
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As before, µ is the b-period of the surface L : µ = ∮
b

v(P ). Consider the map ν̃ from the
covering L onto its fundamental domain T = C/{1, µ}:

ν̃(P ) =
∫ P

P1

v(P ).

This map differs from the map ν(P ) (3.5) by a function of branch points:

ν(P ) = ν̃(P ) + h({λm})
where h({λm}) = ∫ P1

∞(0) v(P ). For our choice of basic cycles the images γ̃m of ramification
points under the map ν̃ are given by

γ̃1 = ν̃(P1) = 0 γ̃2 = ν̃(P2) = 1

2

γ̃3 = ν̃(P3) = 1

2
+

µ

2
γ̃4 = ν̃(P4) = µ

2
.

Since γm − γn = γ̃m − γ̃n (where γm = ν(Pm),m = 1, . . . , 4 are as before the images of
ramification points under the map ν (3.5)), we can use these values of {γ̃m} to write explicitly
the system (3.40) for the simplest covering. To do this we also calculate the coefficients
{αm}4

m=1 defined by (3.12). The form (3.47) of the normalized holomorphic differential v
implies:

α1 = v2
1

2
= 2

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)A2

where A = ∮
a

dλ
ω

. From the Thomae formulae [12] we see that

A2 = 4π2θ4
4

(λ1 − λ4)(λ3 − λ2)

and therefore we have the following expressions for the coefficients αm:

α1 = λ3 − λ2

2π2θ4
4 (λ1 − λ2)(λ1 − λ3)

α2 = − λ1 − λ4

2π2θ4
4 (λ2 − λ1)(λ2 − λ4)

α3 = λ1 − λ4

2π2θ4
4 (λ3 − λ1)(λ3 − λ4)

α4 = − λ3 − λ2

2π2θ4
4 (λ4 − λ2)(λ4 − λ3)

.

Now we can write down the integrable system (3.40) explicitly for K = 2 (K is the matrix
dimension of the system). In this case we use the standard Pauli basis {σ1, σ2, σ3} related to
the matrices σAB as follows:

σ10 = σ1 σ11 = iσ2 σ01 = σ3

σ 10 = 1

2
σ1 σ 11 = i

2
σ2 σ 01 = 1

2
σ3.

(3.48)

The corresponding notation for components of Jm is

J 1
m = J 10

m J 2
m = iJ 11

m J 3
m = J 01

m . (3.49)

We shall write the equations for (J1)λ2

(
J1 = J 1

1 σ1 + J 2
1 σ2 + J 3

1 σ3
)
. The remaining equations

for (Jm)λn
in the case of two-fold elliptic covering have a similar form.

∂J 1
1

∂λ2
= λ1 − λ4

2π2(λ2 − λ1)(λ2 − λ4)
J 1

1
1

θ4
4

θ ′′
2

θ2
+ 2π iJ 3

1 J 2
2 θ2

4

∂J 2
1

∂λ2
= λ1 − λ4

2π2(λ2 − λ1)(λ2 − λ4)
J 2

1
1

θ4
4

θ ′′
2

θ2
− 2π iJ 3

1 J 1
2 θ2

3

∂J 3
1

∂λ2
= λ1 − λ4

2π2(λ2 − λ1)(λ2 − λ4)
J 3

1
1

θ4
4

θ ′′
2

θ2
+

λ3 − λ2

2(λ1 − λ2)(λ1 − λ3)
J 3

2
θ2

3

θ2
4

+ 2π i
(
J 2

1 J 1
2 θ2

3 − J 1
1 J 2

2 θ2
4

)
.
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Here θ2 = θ
[

1
2 , 0

]
(0); θ3 = θ [0, 0](0); θ4 = θ

[
0, 1

2

]
(0) and θ ′′

2 = θ ′′
2 (0) are the standard

theta-constants.

4. Relationship to the Schlesinger system

The elliptic Schlesinger system [1] describes isomonodromic deformations of solutions
�(γ, {zi}) of the following matrix linear differential equation:

d�

dγ
= A(γ )� (4.1)

where γ is a coordinate on the torus T = C/{1, µ}; A(γ ) is a meromorphic sl(K, C)-valued
matrix:

1
A(γ ) =

L∑
j=1

2
tr (

12
r (γ − zj )

2
Aj).

r(γ ) is the elliptic r-matrix (3.27); zj ∈ T , j = 1, . . . , L;L is some integer. At the points {zj }
the matrix A(γ ) has simple poles with residues Aj . The residues are, in turn, parametrized as
follows:

Aj =
K−1∑

A,B=0
(A,B) �=(0,0)

AAB
j σAB (4.2)

where matrices σAB are given by (3.30); AAB
j ∈ C. The matrix A(γ ) has the following

periodicity properties:

A(γ + 1) = F−1A(γ )F A(γ + µ) = HA(γ )H−1.

It is assumed that � has asymptotical expansion near zj , j = 1, . . . , L, of the form:

�(γ ) = (Gj + O(γ − zj ))(γ − zj )
Tj Cj (4.3)

where matrices Gj,Cj , Tj do not depend on γ ;Cj ,Gj ∈ SL(K, C), and Tj are diagonal
traceless matrices such that any two entries of Tj do not differ by an integer number. The
function � transforms as follows with respect to periods 1 and µ of the torus T:

�(γ + 1) = F−1�(γ )Ma �(γ + µ) = H�(γ )Mb

and being analytically continued along a contour lj surrounding the point zj the function �

gains a right multiplier:

�(γ lj ) = �(γ )Mj

where Ma,Mb,Mj are called the monodromy matrices. The assumption of independence
of all monodromy matrices of the positions of singularities {zj } and the b-period µ of the
elliptic Riemann surface is called the isomonodromy condition. This condition together with
expansion (4.3) gives the following dependence of � on µ and {zj }Lj=1:

1
�zi

1
�

−1 = − 2
tr (

12
r (γ − zi)

2
Ai) (4.4)

�µ�−1 =
L∑

j=1

K−1∑
A,B=0

(A,B) �=(0,0)

AAB
j ZAB(γ − zi)σAB (4.5)
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the functions ZAB were defined by (3.34). The compatibility condition of (4.4), (4.5) and (4.1)
gives the Schlesinger system on the elliptic surface:

∂
1

Ai

∂zj

= [
1

Ai,
2
tr (

12
r (zi − zj )

2
Aj)] i �= j

∂
1

Ai

∂zi

= −
L∑

j=1,j �=i

[
1

Ai,
2
tr (

12
r (zi − zj )

2
Aj)]

∂
1

Ai

∂µ
= −

L∑
j=1


 1

Ai,
2
tr


 2

Aj

K−1∑
A,B=0

(A,B)�=(0,0)

ZAB(zi − zj )
1
σAB

2
σ AB




 . (4.6)

The tau-function of this system is defined as the generating function of the following
Hamiltonians:

Hi = 1

4π i

∮
zi

tr A2(γ ) dγ =
L∑

j=1,j �=i

K−1∑
A,B=0

(A,B)�=(0,0)

AAB
j AiABwAB(zi − zj ) (4.7)

Hµ = − 1

2π i

∮
a

tr A2(γ ) dγ = 1

2

L∑
i,j=1

K−1∑
A,B=0

(A,B)�=(0,0)

AAB
j AiABZAB(zi − zj ). (4.8)

∂ log τSch

∂zi

= Hi

∂ log τSch

∂µ
= Hµ. (4.9)

The following theorem shows how (analogously to the rational case [8]) solutions of the elliptic
Schlesinger system (4.6) induce solutions of system (3.38) and (3.40).

Theorem 2. Let L be a genus one covering of the λ-sphere with simple ramification points
P1, . . . , P2N , which have different λ-projections λ1, . . . , λ2N . Consider a set of L points
{Q1, . . . ,QL} on L such that their projections π(Qi) are independent of {λm}. Let ν be the
Abel map (3.5) onto the fundamental domain of the covering, ν : L → T . Consider the
Schlesinger system (4.6) with zi = ν(Qi) and its solution {Aj({zi})}Lj=1. Let �(γ, {zi}) be
the corresponding solution of system (4.1). We can consider � as a function on the covering
L via the Abel map:

�(P ) = �(ν(P ), {ν(Qi)}). (4.10)

Then

1. the function �(P ) satisfies the linear system (3.38) with Jm defined by

1
Jm= −αm

L∑
j=1

2
tr (

12
r (γm − zj )

2
Aj) (4.11)

and, hence, Jm solve the system (3.40);
2. the tau-function τ (3.41) of the system (3.40) is related to the tau-function τSch (4.9) of

the elliptic Schlesinger system according to

τ(λm) =
L∏

j=1

(∂ν

∂λ
(Qj)

)trA2
j /2

τSch
({zk}|zk=ν(Qk)

)
. (4.12)
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Remark. Formula (4.12) coincides with the one relating the tau-function of the rational
system (2.11) and the tau-function of the Schlesinger system on the Riemann sphere, see [8].

Proof. Since the solution � of (4.1) is defined on the space of branch coverings as in (4.10),
we can differentiate it with respect to λm according to the chain rule:

d�

dλm

= ∂�

∂ν

∂ν

∂λm

+
L∑

j=1

∂�

∂zj

∂zj

∂λm

+
∂�

∂µ

∂µ

∂λm

.

(Recall that µ is the b-period of the elliptic Riemann surface.) We differentiate zi = ν(Qi)

according to the formula (3.11) for derivatives of ν and use also formulae (3.22), (4.1), (4.4),
(4.5). Using the relation

wAB(γ − zj )(ρ(zj − γm)− ρ(γ − γm)) + 2π iZAB(γ − zj ) = −wAB(γm − zj )wAB(γ − γm)

which can be proved by checking periodicity properties of both sides as γ → γ + 1, γ → γ + µ

and behaviour at the pole γ = γm, we obtain:

d
1
�

dλm

= −αm

2
tr


12

r (ν − γm)

L∑
j=1

3
tr (

23
r (γm − zj )

3
Aj)


 1

� . (4.13)

We single out the ν-dependent term and denote the rest by Jm:

2
Jm:= −αm

L∑
j=1

3
tr (

23
r (γm − zj )

3
Aj).

This leads to the system (3.38) and proves the first part of the theorem. For the second part,
equality (4.12), we shall prove the following relation between the two tau-functions:

∂ log τ

∂λm

= ∂ log τSch

∂λm

+
L∑

j=1

tr A2
j

2

∂ log ∂ν
∂λ

∂λm

∣∣∣∣∣
ν=zj

. (4.14)

This leads to (4.12) if one observes that

∂ tr A2
j

∂λm

= 0

which follows from the Schlesinger system (4.6). To show (4.14) let us first note two auxiliary
relations. The first one is

wAB(zi − zj )(ρ(zj − γ ) − ρ(zi − γ )) = wAB(γ − zj )w−A−B(γ − zi) − 2π iZAB(zi − zj )

(4.15)

for any pair of non-equal indices i, j . This relation can be verified examining singularities
and periodicity properties and then noting that at the point γ = 1

2 (zi + zj ) both sides are equal
due to the equality

2wAB(2γ )ρ(γ ) = w2
AB(γ ) + 2π iZAB(2γ )

which, in turn, can be proved by the same method. One can apply similar considerations to
verify the second identity which we shall use

wAB(γ )w−A−B(γ ) = 2π iZAB(0) − ρ ′(γ ). (4.16)

To show (4.14) we differentiate the tau-function of the elliptic Schlesinger system τSch with
respect to λm:

∂ log τSch

∂λm

=
L∑

i=1

∂ log τSch

∂zi

∂zi

∂λm

+
∂ log τSch

∂µ

∂µ

∂λm

.
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Then we rewrite all the terms explicitly using (4.9), (4.7), (4.8), (3.11), (3.22) and simplify
the obtained expression applying the auxiliary identity (4.15). Noting also that

Z−A−B(−γ ) = ZAB(γ ) (4.17)

one arrives at the following expression:

∂ log τSch

∂λm

= αmK




L∑
i,j=1
i<j

K−1∑
A,B=0

(A,B) �=(0,0)

εABAAB
j A−A−B

i wAB(γm − zj )w−A−B(γm − zi)

+ π i
L∑

i=1

K−1∑
A,B=0

(A,B) �=(0,0)

εABAAB
i A−A−B

i ZAB(0)


 . (4.18)

The derivative in the second term of the right-hand side of (4.14) can be obtained using (3.11)
as follows:

∂ log ∂ν
∂λ

∂λm

= ∂

∂λ

(
∂ν

∂λm

)/
∂ν

∂λ
= ∂

∂ν

(
∂ν

∂λm

)
hence

∂ log ∂ν
∂λ

∂λm

∣∣∣∣∣
ν=zj

= −αmρ ′(zj − γm). (4.19)

A certain simplification using the second auxiliary identity (4.16) leads to the following
expression for the right-hand side of (4.14):

∂ log τSch

∂λm

+
L∑

i=1

tr A2
i

2

∂ log ∂ν
∂λ

∂λm

∣∣∣∣∣
ν=zi

= αm

2




L∑
i,j=1

K−1∑
A,B=0

(A,B) �=(0,0)

KεABAAB
j A−A−B

i wAB(γm − zj )w−A−B(γm − zi)


 (4.20)

which is nothing but tr
(
J 2

m

)/
2αm, where Jm are given by (4.11). Thus the right-hand side of

(4.14) is equal to (log τ)λm
, where the tau-function τ is defined by (3.41). �

5. Trigonometric degeneration of the elliptic coverings and corresponding integrable
systems

Here we describe the trigonometric version of system (3.40), obtained by a degeneration of the
covering L. Further, as an illustration, we consider the two-fold covering when all coefficients
of the obtained system can be computed explicitely.

Set the matrix dimension K of the system to be 2. An elliptic N -fold covering has,
according to the Riemann–Hurwitz formula, 2N branch points (recall that we assume them
to be simple and distinct). If we let one branch cut degenerate (i.e. we let two ramification
points connected by a branch cut tend to each other), the elliptic covering turns into a rational
one with 2N − 2 ramification points and a double point remaining from the degenerate
branch cut.
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Assume that the points P2N−1 and P2N are connected by a branch cut [P2N−1, P2N ].
Moreover, choose the basic a-cycle on L to surround this branch cut. Consider {λm}2N−2

m=1 as
independent variables and λ2N−1 and λ2N as fixed parameters. Take the limit λ2N−1, λ2N → λQ

with λQ independent of {λm}2N−2
m=1 . Then the branch cut [P2N−1, P2N ] degenerates and the

elliptic curve L turns into the rational curve L0 with two marked points Q1 and Q2 (a double
point) which lie on different sheets of L0 and have the same projection on the λ-plane:

π(Q1) = π(Q2) = λQ.

The basic a-cycle on L turns into a contour on L0 surrounding one of the points Q1 or Q2.
Suppose that it surrounds Q1 in the positive direction. Denote by ζ(P ), P ∈ L0, the one-
to-one map from the genus zero covering L0 with ramification points P1, . . . , P2N−2 to the
Riemann sphere; for simplicity we fix this map by the requirement ζ : ∞(0) → ∞ such that
in a neighbourhood of ∞(0)

ζ(λ) = λ + o(1). (5.1)

Denote the images of points Q1 and Q2 on the Riemann sphere by κ1 and κ2, respectively:

κ1 = ζ(Q1) κ2 = ζ(Q2). (5.2)

The holomorphic differential v(P ) degenerates to the meromorphic on L0 differential v0 with
the simple poles at Q1 and Q2 and residues 1/2π i and −1/2π i, respectively. This differential
can be written in terms of the coordinate ζ as follows:

v0(ζ ) = 1

2π i

(
1

ζ − κ1
− 1

ζ − κ2

)
dζ. (5.3)

The b-period µ of the Riemann surface L in the limit P2N−1 → P2N has the following
behaviour:

µ = 1

π i
log|λ2N−1 − λ2N | + O(1) (5.4)

i.e. µ → +i∞ in this limit, and the fundamental domain T = C/{1, µ} of the covering L
turns into a cylinder. The map ν (3.5) now maps the degenerate covering L0 onto the cylinder
in the γ -sphere:

ν(P ) =
∫ P

∞(0)

v0 = 1

2π i

∫ ζ

∞

(
1

ζ − κ1
− 1

ζ − κ2

)
dζ = 1

2π i
log

ζ − κ1

ζ − κ2
. (5.5)

From the definition (3.7) of the Jacobi theta-functions, we deduce the behaviour of the
logarithmic derivative ρ(γ ) of θ1 = θ

[
1
2 , 1

2

]
as µ → +i∞:

ρ(γ ) → π cot πγ (5.6)

and therefore,

ρ ′(γ ) → − π2

sin2 πγ
. (5.7)

Similarly, the r-matrix becomes in this limit (for the matrix dimension K = 2):

12
r (γ ) →12

r0(γ ) = 1

2

π

sin πγ

1
σ 1

2
σ 1 +

1

2

π

sin πγ

1
σ 2

2
σ 2 +

1

2
π cot πγ

1
σ 3

2
σ 3 (5.8)

where we use the Pauli basis {σi}3
i=1 (3.48); r0 is the so-called trigonometric r-matrix.

Differential equations (3.23)–(3.26) for {γm}2N−2
m=1 (images of non-degenerate ramification

points P1, . . . , P2N−2 under the map ν (5.5)) take the form (for m �= n):

∂γn

∂λm

= −πα0
m[cot π(γn − γm) + cot πγm] (5.9)



Integrable systems related to elliptic branched coverings 10603

∂γm

∂λm

= π

2N−2∑
n=1,n�=m

α0
n[cot π(γm − γn) + cot πγn]

∂α0
n

∂λm

= 2π2 α0
nα

0
m

sin2 π(γn − γm)
(5.10)

∂α0
m

∂λm

= −2π2
2N−2∑

n=1,n�=m

α0
nα

0
m

sin2 π(γn − γm)

where by α0
m we denoted the analogue of the coefficient αm in the degenerate case:

α0
m = 1

2
v2

0m = 1

2

[
v0(P )

d
√

λ − λm

∣∣∣∣
P=Pm

]2

m = 1, . . . , 2N − 2. (5.11)

Remark 1. Differential equations (5.9) can be obtained directly from the form (5.5) of the
map ν using the fact that the map ζ satisfies equations (2.9) with β = 1, cn = 0.

Remark 2. The system (5.9), (5.10) after a simple change of variables coincides with
equations for characteristic speeds of the system of hydrodynamic type to which the Boyer–
Finley equation (self-dual Einstein equation with one Killing vector) Uxy = (eU)tt reduces
[13].

The linear system for the matrix � is written now via the trigonometric r-matrix r0:

d
1
�(P )

dλm

= 2
tr (

12
r 0 (ν(P ) − γm)

2
Jm)

1
�(P ) (5.12)

m = 1, . . . , 2N − 2. Then, the trigonometric version of system (3.40) for Jm = J 1
mσ1 +

J 2
mσ2 + J 3

mσ3 (for notation see (3.49)) gives the compatibility condition of the above linear
system:

∂J 1
m

∂λn

= α0
nπ

2

sin2 π(γm − γn)
J 1

m +
α0

mπ2 cos π(γm − γn)

sin2 π(γm − γn)
J 1

n

+
2π i

sin π(γm − γn)

(
J 2

mJ 3
n cos π(γm − γn) − J 3

mJ 2
n

)
∂J 2

m

∂λn

= α0
nπ

2

sin2 π(γm − γn)
J 2

m +
α0

mπ2 cos π(γm − γn)

sin2 π(γm − γn)
J 2

n (5.13)

+
2π i

sin π(γm − γn)

(
J 3

mJ 1
n − J 1

mJ 3
n cos π(γm − γn)

)
∂J 3

m

∂λn

= α0
nπ

2

sin2 π(γm − γn)
J 3

m +
α0

mπ2

sin2 π(γm − γn)
J 3

n +
2π i

sin π(γm − γn)

(
J 1

mJ 2
n − J 2

mJ 1
n

)
the indices m and n are different and range in the set {1, . . . , 2N − 2}.

All the involved coefficients can be explicitly computed if we start with the two-fold
elliptic covering. After the degeneration we get a rational covering L0 with two ramification
points P1 and P2 (with the λ-projections λ1 and λ2) and the marked points with the projection
λQ independent of λ1 and λ2. The one-to-one map ζ from this covering to the Riemann sphere
which satisfies condition (5.1) has the following form:

ζ(P ) = 1

2

(
λ +

λ1 + λ2

2
+
√

(λ − λ1)(λ − λ2)
)

(5.14)
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where λ = π(P ), the projection of the point P on the base of the covering. Knowing the
expression for the map ζ allows us to find the images γ1, γ2 of the non-degenerate ramification
points P1, P2 under the map ν(P ) since it can be explicitly integrated (see(5.5)):

γm = 1

2π i
log

ζm − κ1

ζm − κ2
(5.15)

where ζm = ζ(Pm),m = 1, 2 are the images on the Riemann sphere of ramification points.
One can find them from the form (5.14) of the map ζ :

ζ1 = ζ(λ1) = 3λ1 + λ2

4
ζ2 = ζ(λ2) = λ1 + 3λ2

4
.

For the ζ -images κ1,2 of points Q1 and Q2 (5.2) we have

κ1,2 = 1

2

(
λQ +

λ1 + λ2

2
±√

(λQ − λ1)(λQ − λ2)
)
.

Now one can easily see from (5.15) that

e2π iγ1 =
√

λ1 − λQ −√
λ2 − λQ√

λ1 − λQ +
√

λ2 − λQ

= −e2π iγ2 (5.16)

and, therefore, γ1−γ2 = ±1/2. The same conclusion can be drawn if one observes that γ1−γ2

is equal to one half of the integral over the a-period of the differential v (see definition (3.5)
of the map ν). The sign of the difference γ1 − γ2 is determined by the choice of direction of
the a-cycle.

It remains to calculate one more ingredient of system (3.40) for Jm, namely the coefficients
α0

1,2 (5.11). Denoting by v0(x) a locally defined function such that v0 = v0(x) dx (x being a
local parameter on the covering), from the relation

v0(x) dx = 1

2π i

(
1

ζ − κ1
− 1

ζ − κ2

)
dζ

we deduce that

dζ

dx
(λm) = 2π iv0m

(ζm − κ1)(ζm − κ2)

κ1 − κ2
m = 1, 2.

From the explicit form (5.14) of the map ζ(P ) one can compute the coefficients (dζ/dx)(λm)

of expansion of ζ(P ) in neighbourhoods of ramification points P1, P2. Then we obtain the
expressions for α0

m = 1
2v2

0m(m = 1, 2):

α0
1 = − 1

2π2

λ2 − λQ

λ1 − λQ

1

λ1 − λ2
α0

2 = − 1

2π2

λ1 − λQ

λ2 − λQ

1

λ2 − λ1
.

In the limit λQ → ∞, summarizing all the above calculations, we get from (5.13) the system
of equations for J1 = J 1

1 σ1 + J 2
1 σ2 + J 3

1 σ3:

∂J 1
1

∂λ2
= 1

2

1

λ1 − λ2
J 1

1 − 2π iJ 3
1 J 2

2

∂J 2
1

∂λ2
= 1

2

1

λ1 − λ2
J 2

1 + 2π iJ 3
1 J 1

2

∂J 3
1

∂λ2
= 1

2

1

λ1 − λ2

(
J 3

1 − J 3
2

)
+ 2π i

(
J 1

1 J 2
2 − J 2

1 J 1
2

)
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and the similar system for J2:

∂J 1
2

∂λ1
= 1

2

1

λ2 − λ1
J 1

2 + 2π iJ 3
2 J 2

1

∂J 2
2

∂λ1
= 1

2

1

λ2 − λ1
J 2

2 − 2π iJ 3
2 J 1

1

∂J 3
2

∂λ1
= 1

2

1

λ1 − λ2

(
J 3

1 − J 3
2

)
+ 2π i

(
J 1

1 J 2
2 − J 2

1 J 1
2

)
.
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